
Abstract — In finite element analyses for electromagnetic 

field, large air regions should be divided by FE meshes. It 

causes to increase analysis time. The infinite element which can 

express the electromagnetic field in infinite region is proposed 

in order to solve this problem. However, by using this element, 

the convergence characteristic of the Incomplete Cholesky 

Conjugate Gradient (ICCG) method deteriorates because the 

condition number of system matrix becomes large. Thus, in 

this paper, we introduce a deflation technique to improve the 

convergence characteristic. Numerical examples show that the 

deflation technique can improve convergence characteristic of 

a magnetostatic analysis with finite and infinite elements. 

I. INTRODUCTION 

In the numerical analyses of electromagnetic field, the 

finite element (FE) method is widely used. The 

electromagnetic phenomena spread over infinite space. 

Therefore, this method needs to divide the air region by FE 

meshes. This causes to increase analysis time and cost of 

mesh generation. One of the solutions of this problem is the 

infinite element (IE) technique [1],[2]. This technique 

enables to reduce the mesh in air region. However, the IE 

technique has a disadvantage that the condition number of 

system matrix becomes large and the convergence 

characteristic of ICCG method deteriorates. This results in 

increasing the computational time. For this reason, 

improving convergence characteristic of ICCG is required. 

One of the techniques to improve the convergence 

characteristic of ICCG is the deflation technique [3],[4]. 

Small eigenvalues of the system matrix are replaced with 

zeros to improve the condition number. In this paper, the 

deflation technique is applied to FE analysis using IE 

technique. 

II. INFINITE ELEMENT TECHNIQUE 

Let’s us consider a IE proposed in Ref. [1],[2]. The IE is 

based on an idea that interpolation of radiation direction is 

expressed in a multipole expansion of potential. The IE is 

connected with boundary of FE region: the surface of FE 

corresponds to the IE element. The matrix obtained by the 

weak form of Galerkin method using IE is sparse and 

symmetric. Thus, the system matrix made from IE can be 

solved by the ICCG method. 

Figure 1 shows the local coordination of a square IE for 

hexahedral FE. 

The IE consists of 4 edges on the square and 4 edges 

whose end are on the vertexes of square. The latter edges 

extend to infinity. The reference point O (X0, Y0, Z0) is 

placed in the FE region. The local coordinate system 

consists of r, s and t; -1 < r, s < 1, 1<t < ∞. 

The coordinate of an arbitrary point P in IE is given by: 
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In the IE, the magnetic vector potential A can be 

interpolated by: 
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where, N is the order of series expansion,
n
iN is the shape 

function of IE defined by, 
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The explicit form of ),( srf i , ),( srg i and ),( srhi are shown 

in Table I. 

 
Fig.1. Local coordinates of infinite element 
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TABLE I EXPLICIT FORM OF (3) AND (4) 

Edge 

number i 
fi(r,s) gi(r,s) 

Edge 

number i 
hi(r,s) 

1 4/)1( s  0 5 4/)1)(1( sr   

2 4/)1( s  0 6 4/)1)(1( sr   

3 0 4/)1( r  7 4/)1)(1( sr   

4 0 4/)1( r  8 4/)1)(1( sr   

III. DEFLATION TECHNIQUES 

Let us consider solving an FE equation bx K , where K 

is a symmetric semi-positive definate matrix whose 

eigenvalues are
n
  

21
, b is assumed to be in the 

range of K. The deflation technique is implemented the 

decomposition xxx QP  , where P and Q are a projector 

matrix. P and Q satisfies P
2
 = P and Q = I – P. It is readily 

shown that PQ=0. Let us introduce the matrices W = [w1,

…,wk] and W = [wk+1,…,wn] which are composed of the 

orthogonal eigenvectors of K. Then x is decomposed into 

the slowly and fast convergent components Wz, x - Wz, 

where the former is the projection of x onto the space 

spanned by wi. The vector z can be determined from the 

orthogonality condition (x – Wz , wi )K=0, that is 

 xz KWKWW tt  . (5) 

The above decomposition is expressed as Px = x-Wz. thus, 

assuming W
t
KW is regular, we obtain P = I – W(W

t
KW

t
)

-

1
W

t
K. The equation for Px can be obtained from the 

commutability KP =P
t
K, that is 

 bx
tt PKP  . (6) 

It follows from P
t
KW = 0 and WKWKPt  that P

t
K has an 

effective condition number 1/ kn  which is smaller than the 

condition number of K. 

IV. NUMERICAL RESULTS 

To shows the effects of the deflation technique, we 

analyzed a simple magnetostatic model which consists of a 

coil and air region shown in Fig.2. The number of IE, FE 

and unknowns are provided in Table II. The hexahedral 

edge FEs and the square IEs with N = 2 are used for mesh. 

 Figure 3 shows the eigenvalue distribution of matrix K 

except zero eigenvalues. We can see that there is a large 

difference between minimum eigenvalue and maximum one. 

Moreover, the distribution is clearly separated into two 

parts. The number of iterations in the deflated ICCG 

compared with ICCG is shown in Table III, and the 

convergence history is shown in Fig. 4. The convergence 

characteristic of deflated ICCG is significantly improved 

because the lower part of eigenvalues in Fig. 3 is deflated. 
 

TABLE II MODEL PARAMETERS 

 Finite element Infinite element 

Number of elements 1000 600 

Number of unknowns 3630 3604 

 

 
Fig.2. Analysis model 
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Fig.3. Eigenvalue distribution 
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Fig.4. Comparison of convergence between ICCG and deflated ICCG 

 

TABLE III NUMBER OF ITERATIONS 

 ICCG Deflated ICCG 

Number of iterations 20 407 
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